Исследование природных индикаторов, содержащихся в цветах цветковых растений, для определения среды растворов.

Мордвинцева Д.Д.

Химия

8 класс, МОУ Быковская СОШ №14, рабочий поселок Быково, г. Раменское, Раменского района, Московской области Научный руководитель: Макаренкова Г.Ю., учитель химии, к.т.н.

Введение.

Еще со времен алхимиков, а позднее и в первых научных химических лабораториях использовались растворы кислот и щелочей, которые хранились в подписанных стеклянных бутылях. Иногда этикетка терялась или портилась, тогда определить, что за раствор находится в бутыли, становилось непросто.

В настоящее время в производстве и в химических лабораториях, в том числе и учебных, широко используются эти растворы. По физическим свойствам практически все они прозрачны и бесцветны. Кроме того реакции нейтрализации, происходящие между растворами кислот и щелочей с образованием соли и воды, идут с изменением среды раствора. Пронаблюдать за ходом такой реакции визуально невозможно в том случае, если соли образуют прозрачный раствор.

Поэтому качественные реакции, которые осуществляются при помощи специальных веществ-индикаторов, всегда были необходимы в химической практике. В связи с этим, я обратилась к истории химической науки и в частности к повторению известного эксперимента, который был проведен в XVII веке знаменитым английским химиком Робертом Бойлем. В ходе случайного стечения обстоятельств, он открыл, что экстракты некоторых цветов, в частности фиалки, могут изменять свой цвет под воздействием кислот и щелочей. И впоследствии использовал это в химической практике.

Целями моей научно-исследовательской работы можно назвать изучение различных цветов цветковых растений с целью определения возможности их использования в качестве индикаторов среды раствора и создание цветной таблицы природных индикаторов.

Для достижения этих целей, я поставила следующие задачи:

- провести анализ имеющихся в истории химии сведений относительно использования цветковых растений и/или экстрактов из них в качестве индикаторов;
- ▶ выбрать цветковые растения, доступные в зимнее время года (комнатные растения и срезанные цветы), и приготовить экстракты для выполнения исследований;
- изготовить индикаторную бумагу с использованием фильтровальной бумаги и экстрактов цветов и провести исследования с использованием слабых растворов кислот, щелочей, а также воды;
- ▶ выявить цветы, экстракты которых дали наиболее контрастное изменение цвета при изменении среды раствора;
- ▶ выяснить влияет ли цвет (оттенок) цветка на его способность быть контрастным индикатором;
- на основе проведенных исследований сформулировать выводы исследовательской работы;
- создать цветную таблицу наиболее контрастных природных индикаторов,
 которые возможно использовать в практике для определения среды раствора;
- > изготовить индикаторную бумагу из экстрактов выбранных цветов.

В качестве объектов исследования можно указать цветы комнатных и декоративных цветковых растений и листья чая.

Предмет исследования — определение возможности использования экстрактов из цветов растений и чайных листьев в качестве индикаторов для определения среды раствора (кислая, щелочная, нейтральная).

Краткие теоретические сведения о растворах кислот, щелочей и индикаторах. Использование их в практике химических исследований.

Кислота — это сложное вещество, в молекуле которого имеется один или несколько атомов водорода и кислотный остаток. При растворении в воде кислоты образуют ионы водорода H^+ (заряженные частицы). Именно ионы

придают кислотам их свойства, следовательно, ионы водорода определяют кислую среду раствора. [3]

Основание (или гидроксид) — это соединение, химически противоположное кислоте. В состав основания входят ионы металлов и связанные с ними гидроксид-ионы ОН⁻. Следовательно, гидроксид-ионы определяют щелочную среду раствора. [3]

Когда ионы ОН⁻ (отщепленные от щелочи) в растворе встречаются с ионами Н⁺ (отщепленные от кислоты), они соединяются, образуя молекулы воды. Молекулы воды распадаются на ионы достаточно слабо, поэтому в дистиллированной (химически чистой) воде ионов Н⁺ и ионов ОН⁻ будет поровну. Следовательно, реакция среды в такой воде будет нейтральная. Поэтому реакция, при которой щелочи вступают в реакции с кислотами, образуя соль и воду, называется реакцией нейтрализации от приобретаемой среды раствора. [4]

Химики отличают щелочь от кислоты по цвету индикаторов. Слово «индикатор» происходит от латинского indicator — «указатель».

В химии существует несколько различных видов индикаторов – кислотно-основные индикаторы, окислительно-восстановительные индикаторы, термоиндикаторы, адсорбционные индикаторы и прочие. Но я в своей работе буду рассматривать только первый названный вид индикаторов, реагирующих на кислотность среды. [6]

Индикаторы — это органические вещества сложной природы, меняющие цвет при контакте с кислотой или щелочью в зависимости от ионного состава среды. Индикаторы можно условно считать слабыми кислотами, соли которых в растворе имеют разную окраску из-за того, что в кислой и щелочной среде их молекулы имеют разное строение. [4]

Кислотно-щелочные индикаторы очень разнообразны, каждый обладает своими особенностями. Наиболее распространённые, в том числе использующиеся в нашей школьной лаборатории, это лакмус, фенолфталеин, метиловый оранжевый и универсальный индикатор.

Индикаторы известны людям не одно столетие. Индикаторами являются, например, экстракты или отвары окрашенных плодов и цветов. Так, красными в кислой среде становятся отвары черники, малины, черной смородины, свеклы и т.д. В щелочной среде они будут синими. Это легко заметить, если помыть кастрюлю с остатками борща мыльной (т.е. щелочной) водой. [2, 5]

Чай – тоже индикатор: он светлеет, если в него положить ломтик лимона, и темнеет, если добавить в него пищевую соду. Чай же из цветков («каркаде») дает намного более яркие цвета. [4, 5]

Вероятно, самый старый кислотно-основной индикатор — лакмус. Лакмус известен еще с 1300 г. Состоит природный лакмус из смеси 10-15 разных веществ, добывают его в основном из лишайников. Надо сказать, что само красящее вещество лакмус был известен ещё в Древнем Египте и Древнем Риме. [6]

В 1640 г. были описаны свойства цветковых растений — в частности фиалок, способных менять цвет в зависимости от кислотности среды. Об этом можно прочитать в трудах знаменитого физика и химика XVII века Роберта Бойля. Случайность помогла ему раскрыть этот секрет природы — садовник принес корзину с фиалками в тот момент, когда Роберт Бойль направлялся в лабораторию. [1] Он взял фиалки с собой, случайно на них попала кислота. Когда ученый захотел промыть цветы водой, неожиданно лепестки изменили свой цвет с фиолетового на красный. Роберт Бойль после этого проделал множество опытов, доказывающих эффективность экстрактов из цветков для определения среды раствора. [1]

Позже из другого растения с темно-лиловыми цветками — гелиотропа (Heliotropium Turnesole) — было выделено красящее вещество, которое, наряду с экстрактом фиалок, стало широко применяться химиками в качестве индикатора. Цветы изменяли свой цвет: в кислой среде цвет был красным, а в щелочной — синим. [2]

Эксперименты следовали один за другим, проверялись васильки и другие растения, но всё же лучшие результаты дали опыты с лакмусовым лишайником.

Так, в 1663 году был заново, с химической точки зрения, открыт индикатор для обнаружения кислот и оснований, названный по имени лишайника лакмусом. [4]

После многолетних экспериментов, в 1667 г. Роберт Бойль предложил пропитывать фильтровальную бумагу отваром лишайника-лакмуса, а также отварами фиалок и васильков. Высушенные и нарезанные бумажки ученый назвал индикаторами (с латинского – «указатель»), т.к. они указывают на среду раствора. Так впервые появилась индикаторная бумага. [1]

К сожалению, почти у всех природных индикаторов есть серьезный недостаток: их отвары и водные экстракты довольно быстро портятся – скисают или плесневеют. Спиртовые экстракты более устойчивы, но тоже недолговечны. Другой недостаток – слишком широкий интервал изменения цвета. При помощи природных индикаторов трудно или почти невозможно отличить, например, нейтральную среду от слабокислой или слабощелочную от сильнощелочной. [6]

Поэтому в настоящее время в химических лабораториях используют синтетические индикаторы, резко изменяющие свой цвет в достаточно узких границах кислотности. Такие индикаторы химики научились искусственно получать позже, в середине XIX века. В наши дни известно несколько сотен искусственно синтезированных кислотно-основных индикаторов. [5]

Выбор цветов для приготовления экстрактов.

В связи с тем, что в зимнее время года в нашей природной зоне в живой природе цветы не встречаются, мы приобрели цветы в магазине и взяли комнатные растения, у которых также были цветы.

Для того, чтобы результаты экспериментов были наиболее контрастными и изменения были хорошо заметны, мы изначально, для первой стадии эксперимента, выбрали цветы наиболее темных расцветок бордовые и темнокрасные.

Также для эксперимента мы взяли чай, так как сведения о том, что экстракт и отвар из чайных листьев способен менять цвет как индикатор, достаточно часто упоминаются в литературе.

Итак, для эксперимента мы взяли следующие цветы: роза, хризантема, декабрист, гвоздика, фиалка, чай черный, чай с добавлением шиповника.

Методика приготовления экстрактов из лепестков цветов.

Так как спиртовые экстракты могут храниться более длительное время по сравнению с отварами или водными экстрактами, решено было готовить именно их. Также этиловый спирт более полно растворяет красящие органические вещества и переводит их в раствор (экстракт) по сравнению с водой. Для приготовления экстрактов нам потребовалось:

- лепестки цветкового растения;
- этиловый спирт 98%;
- мерный цилиндр и мерная пробирка;
- чистый флакон с плотно закрывающейся пробкой;
- ножницы для измельчения лепестков;
- стеклянная воронка и стеклянная палочка.

Фотографии материалов, которые я использовала для приготовления экстрактов, представлены на рисунке 1

Приготовление экстракта:

- 1. Лепестки цветкового растения необходимо измельчить ножницами для более полного извлечения веществ и для того, чтобы лепестки было проще поместить во флакон с достаточно узким горлышком.
- 2. С помощью стеклянной воронки и палочки поместить нарезанные лепестки во флакон.
- 3. С помощью мерного цилиндра или мерной пробирки отмерить 20-40 мл этилового спирта (в зависимости от величины цветка) и залить во флакон. Необходимо, чтобы этиловый спирт покрывал лепестки полностью.

4. Флакон необходимо поставить в темное место для того, чтобы предотвратить возможное разрушение красящих веществ (пигментов) от солнечного света.

Рисунок 1. Фотографии материалов, использованных для приготовления

экстрактов.

Сравнение различных цветов растений в качестве индикаторов среды растворов. Методика проведения исследований.

Готовые экстракты я проверяла на способность изменять цвет в зависимости от среды раствора. Для этого я изготовила индикаторную бумагу. На обычный бумажный фильтр, предварительно подписанный, чтобы избежать путаницы, наносились готовые экстракты.

Затем на данные фильтры наносились в разные места по 2-3 капли растворов кислоты, щелочи и воды (в качестве нейтральной среды). Произошедшие изменения мы зафиксировали в таблицах 1 (для садовых растений), 2 (для чая) и 3 (для комнатных растений). Указания измененных цветов представлены в таблице 4.

Так как мы не высушивали фильтровальную бумагу перед нанесением капель различных растворов, то после высыхания цвета некоторых фильтров изменялись, что также отражено в таблице.

Условные обозначения к таблицам — к.ср. — кислая среда, щ.ср — щелочная среда, н.ср. — нейтральная среда.

 Таблица
 1. Изменение цвета экстрактов декоративных цветов в

 зависимости от среды растворов.

Растение	Результат до	Результат после	Описание
	высушивания	высушивания	
Posa	Posa Ugen	Posa Usen Hiso	к.ср. – розово-красный, щ.ср. – желтый, н.ср. – изменений нет, после высушивания – фиолетовый.
Гвоздика	Кис. Возганка Н ₂ 0	Teo 3 rd Mey	к.ср. – розово-красный, щ.ср. – зеленый, н.ср. – изменений нет, после высушивания – фиолетовый.
Хризантема	Кис. Чэо	Хризантема кис. ще́л. Н₃О	к.ср. – бледно-желтый, щ.ср. – интенсивнее желтый, н.ср. – бледно-желтый.

Таблица 2. Изменение цвета экстрактов чая в зависимости от среды растворов.

Растение	Результат до высушивания	Результат после высушивания	Описание
Чай с добавками	Wai c 95h. 4 With	H ₂ O	к.ср. – светло-желтый, щ.ср. – коричневый, темно-желтый н.ср. – желтый,
Чай чёрный	Цай чё́рн _{ы;} кис. и.е.,	Kue. Wer	к.ср. – бледно-бледно- желтый, щ.ср. – светло- коричневый, н.ср. – светло-желтый,

 Таблица
 3. Изменение цвета экстрактов комнатных цветов в

 зависимости от среды растворов.

Растение	Результат до	Результат после	Описание
	высушивания	высушивания	
Декабрист	Декабрист	A.EKABPUCT	к.ср. – видимых
	Kuc,	Kuc. Jugën.	изменений нет,
	W ₂ O	H _a O	щ.ср. – очень светло-
	(d.)	Mao	желтый,
			н.ср. – видимых
			изменений нет.
Фиалка	Риалка	Риалка	к.ср. – светло-розовый,
	Kuc. Wên.	KNC. Wen.	щ.ср. – светло-желтый,
			н.ср. – видимых
	H _a 0	H ₃ 0	изменений нет.

Таблица 4. Изменение окраски фильтров в зависимости от среды раствора (для высушенных фильтров).

Индикатор	Кислотная среда	Щелочная среда	Нейтральная
			среда
Роза	Малиновый	Желтый	Фиолетовый
Декабрист	Видимых	Видимых	Видимых
	изменений нет	изменений нет	изменений нет
Гвоздика	Ярко-малиновый	Зелёный	Фиолетовый
Чай с яблоками и	Видимых	Бурый	Видимых
шиповником (с	изменений нет		изменений нет
добавками)			
Хризантема	Видимых	Более	Видимых
	изменений нет	интенсивный	изменений нет
		жёлтый	
Фиалка	Розовый	Светло-жёлтый	Почти
			бесцветный
Чай чёрный	Видимых	Оранжевый	Видимых
	изменений нет		изменений нет

Сравнение экстрактов цветковых растений различных цветов (оттенков) в качестве индикаторов среды растворов. Методика проведения исследований.

Наиболее яркие результаты в предыдущем эксперименте дали экстракты розы, гвоздики и фиалки. Роза и гвоздика явились наиболее доступными цветковыми растениями для проведения экспериментов с другими оттенками этих цветков.

Для контраста были использованы светлые цвета цветков растений, в частности роза была выбрана светло-розового и желтого оттенков, а гвоздика – светло-розового и белого оттенков. Экстракты из данных цветов были

приготовлены аналогично, в соответствии с методикой приготовления экстрактов из лепестков цветов (см. выше).

Готовые экстракты цветков других оттенков я также проверяла на способность изменять цвет в зависимости от среды раствора. Методика изготовления индикаторной бумаги и исследования изменения ее цвета в разных средах была такая же, как и для других цветов (см. выше).

Произошедшие изменения мы зафиксировали в таблице 5 (для розы) и в таблице 6 (для гвоздики). Измененния цветов представлены в таблице 7.

Условные обозначения к таблицам — к.ср. — кислая среда, щ.ср — щелочная среда, н.ср. — нейтральная среда.

Таблица 5. Изменение цвета экстрактов розы различных оттенков в зависимости от среды растворов.

Растение	Результат к.ср. щ.ср.	Описание
Роза темная	ж.ср. — розово-красный, щ.ср. — желтый, н.ср. — изменений нет, высушивания — фиолето	
Роза светло-розовая		к.ср. – изменений нет, щ.ср. – светло-желтый, н.ср. – изменений нет, после высушивания – светло-светло желтый, желтизна слабо выражена.
Роза желтая		к.ср. – изменений нет, щ.ср. – желтый, н.ср. – изменений нет, после высушивания – светло желтый, желтизна заметна.

Таблица 6 Изменение цвета экстрактов гвоздики различных

оттенков в зависимости от среды растворов.

Растение	Результат	Описание	
	к.ср. щ.ср.		
	внизу н.ср.		
Гвоздика темная		к.ср. – розово-красный, щ.ср. – зеленый, н.ср. – изменений нет, после высушивания – фиолетовый.	
Гвоздика светло- розовая		к.ср. – светло-малиновый, щ.ср. –желтый, н.ср. – изменений нет, после высушивания – светлорозовый, цвет слабо выражен.	
Гвоздика белая		к.ср. – изменений нет, щ.ср. –желтый, н.ср. – изменений нет, после высушивания – светло-светло желтый, желтизна слабо заметна.	

Таблица 7. Изменение окраски фильтров в зависимости от среды

раствора (для высушенных фильтров).

Индикатор	Кислотная среда	Щелочная среда	Нейтральная
			среда
Роза темная	Малиновый	Интенсивно	Фиолетовый
		желтый	
Роза светло-	Видимых	Светло-жёлтый	Видимых
розовая	изменений нет		изменений нет
Роза желтая	Видимых	Желтый	Видимых
	изменений нет		изменений нет
Гвоздика темная	Ярко-малиновый	Зелёный	Фиолетовый
Гвоздика светло-	Светло-	Желтый	Видимых
розовая	малиновый		изменений нет
Гвоздика белая	Видимых	Желтый	Видимых
	изменений нет		изменений нет

Выводы по результатам исследований.

В ходе работы над проектом я изучила способность экстрактов различных цветов цветковых растений менять цвет в зависимости от среды раствора (кислой, нейтральной и щелочной). Я пришла к следующим выводам:

- в литературе и в научных статьях описано множество растений и плодов, обладающих способностью к изменению цвета при изменении среды раствора. Самыми действенными считаются лакмус и фиалка;
- индикаторы и индикаторная бумага используются в химической лабораторной практике начиная, примерно с 1640-1670 гг., при этом экстракты цветов и саму индикаторную бумагу изготовить достаточно просто;
- на основе результатов экспериментов хорошо видно, что не все цветковые растения могут быть использованы в качестве индикаторов. В частности декабрист, хризантема и чай не показали должной контрастности при нанесении на фильтровальную бумагу.
- даже если цветковое растение показывает необходимую контрастность для определения среды раствора, то чем темнее оттенок самого цветка, тем контрастнее будет меняться цвет его экстракта в различных средах.

Для изготовления индикаторной бумаги c использованием фильтровальной бумаги и экстрактов цветов я выбрала три экстракта – экстракт розы бардового цвета, гвоздики также бардового цвета и фиалки. Именно экстракты этих цветов дали наиболее контрастное изменение цвета при возможности изменении среды раствора. Для использования этой индикаторной бумаги я создала цветную таблицу, в которой указаны изменения цвета в кислой, щелочной и нейтральной средах. Цветная таблица для определения индикаторов представлена на рисунке 2.

Заключение по результатам исследований.

Природные индикаторы — это очень интересная тема для исследований. Многие растения и плоды содержат природные красители и органические вещества сложного строения, способные менять цвет в кислотах и щелочах. Так же как и много лет назад Роберту Бойлю, мне удалось пронаблюдать красочные

цветные изменения и получить очень интересный практический опыт по созданию природных индикаторов из цветов цветочных растений.

Неоспоримым плюсом природных индикаторов является их действенность в определении среды растворов и простота в изготовлении.

К сожалению, природные индикаторы имеют ряд серьезных недостатков:

- их отвары и водные экстракты довольно быстро портятся скисают или плесневеют;
- спиртовые экстракты тоже недолговечны, так как природное сырье это смесь из множества сложных веществ, которые могут саморазрушаться и влиять друг на друга с течением времени;
 - только некоторые цветы или плоды способны быть индикаторами;
 Рисунок 1. Цветная таблица для определения среды растворов.

ЦВЕТНАЯ ТАБЛИЦА ДЛЯ ОПРЕДЕЛЕНИЯ СРЕДЫ РАСТВОРА

Индикатор	Кислотная среда	Щелочная среда	Нейтральная среда
Роза	Малиновый	Желтый	Фиолетовый
Гвоздика	Ярко- малиновый	Зелёный	Фиолетовый
Фиалка	Розовый	Светло- жёлтый	Почти бесцветный

- природные индикаторы невозможно использовать в сложных опытах, так как при помощи природных индикаторов трудно или невозможно отличить,

например, нейтральную среду от слабокислой или слабощелочную от сильнощелочной;

- цвета природных индикаторов могут зависеть от цвета цветка и сорта растения (например, для роз насчитывается несколько десятков сортов и большое количество расцветок).

Список использованной литературы.

Манолов Калоян. Великие химики. Tom 1. – M.: Мир, 1985. – 468c.

Меженский В.Н. Растения-индикаторы. (серия «Приусадебное хозяйство») – М. ООО «Издательство АСТ», 2004. – 76с.

Информация для проекта взята с сайтов

https://sitekid.ru/himiya/kisloty_cshelochi_i_osnovaniya_s_tochki_zreniya_himii.html

https://zen.yandex.ru/media/helperia/kak-otlichit-kislotu-ot-scelochi-5a8275d055876b3889b67a0a

https://sitekid.ru/himiya/indikatory_v_himii.html

https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/INDIKATORI.html