### ПАЛИНДРОМЫ И РЕПЬЮНИТЫ

### Сурова А.А.

МБОУ гимназия № 121, 7 «Б» класс Руководитель: Шагина Э.М., МБОУ гимназия № 121, учитель математики

Актуальность данной темы заключается в том, что использование нестандартных приемов в формировании вычислительных навыков помогает сэкономить время на уроке, успешно сдать экзамен как в 9-м, так и в 11-м классе по математике.

Числа палиндромы и репьюниты образуют одно из наиболее интересных подмножеств множества натуральных чисел. Они обладают необычной историей, удивительными свойствами.

Было проведено исследование среди 7, 8, 9, 11 классов и выяснилось, что многие ребята слышали об этих числах, но подробную информацию знают единицы. Многие из опрошенных учащихся хотели бы узнать об этих числах больше.

В настоящее время при переходе на новые стандарты меняются цели основного и среднего (полного) образования. Одна из главных задач, стоящих перед нами, учителями, в условиях модернизации образования - вооружить учащихся осознанными, прочными знаниями, развивая их самостоятельное мышление. В условиях развития новых технологий возрос спрос на людей, обладающих нестандартным мышлением, умеющих ставить и решать новые задачи. Поэтому в практике работы современной школы все большее распространение приобретает исследовательская деятельность учащихся как образовательная технология, направленная на приобщение учащихся к активным формам получения знаний. Научноисследовательская деятельность является:

- 1) мощным средством, позволяющим увлечь новое поколение по самому продуктивному пути развития и совершенствования;
- 2) одним из методов повышения интереса и соответственно качества образовательного процесса.

Цель: познакомиться с числами палиндромами и репьюнитами и выявить эффективность их применения для обучения современных школьников. Практически все математические понятия, так или иначе, опираются на понятие числа, а конечный результат любой математической теории, как правило, выражается на языке чисел. Многие из них, особенно натуральные числа по тем или иным признакам и свойствам сгруппированы в отдельные структуры (совокупности) и имеют собственные имена.

### Задачи:

- раскрыть историю возникновения счета;
- рассмотреть некоторые приемы устных вычислений и на конкретных примерах показать преимущества их использования;
  - изучить литературу по теме исследования;
- рассмотреть свойства палиндромов и репьюнитов;
- установить связь между палиндромами и репьюнитами;
- выяснить, какую роль играют простые числа в изменении свойств заинтересовавших нас чисел.

**Гипотеза**: если использовать нестандартные приемы вычислений, то скорость вычислений увеличивается, а количество ошибок уменьшается.

Простые числа – это часть чисел, из которых состоят все натуральные числа.

Исследуя множество простых чисел, можно получить удивительные числовые множества с их необыкновенными свойствами.

**Предмет** исследования – множество простых чисел.

**Объект** исследования –числа палиндромы и репьюниты.

Методы исследования:

- теоретический
- анкетирование
- анализ

Практически все математические понятия, так или иначе, опираются на понятие репьюнитов, а конечный результат любой математической теории, как правило, выражается на языке чисел.

Работа посвящена изучению удивительных чисел: палиндромов и репьюнитов, установлению связи между ними.

### 1. Палиндромы

История теперь палиндрома насчитывает примерно два тысячелетия. Определено другое название — квадропалин. Палиндром — свойство фракталов, кристаллов и живой материи. Способность самокопирования лежит в человеческой природе глубоко, на генетическом уровне. Молекулы ДНК обнаруживают палиндромные элементы. Сам человек являет собой наглядный пример палиндрома, точнее, частный случай вертикальной симметрии.

Есть такие удивительные фразы, которые читаются одинаково и слева направо,

и справа налево. Когда я читала книгу Алексея Константиновича Толстого «Буратино», то обратила свое внимание на такую фразу: *А роза упала на лапу Азора*. Именно ее просила написать в диктанте неуча Буратино капризная Мальвина.

Называются такие взаимообратные фразы **палиндромами**, что в переводе с греческого означает «бегущий назад, возвращающийся». Палиндром — одна из древнейших форм литературных экспериментов. Изобретение европейских палиндромов приписывается греческому поэту Сотаду (300 г. до н.э.).

Известен греческий палиндром, вырезанный на купели византийского храма Софии в Константинополе: niyon anomhmata mh monan oyin (омывайте дущу так же как и тело). Здесь уже проявляется заговорный характер палиндрома — записанная по кругу надпись должна служить заклятием от злых сил, не допуская их к святой купели.

Вот некоторые палиндромные фразы: Аргентина манит негра. Умер, и мир ему. Лезу на санузел. У дуба буду. Около Миши молоко. Вот сила типа капиталистов. Ешь немытого ты меньше! Откопать тапокто? «Пустите!» — Летит супу миска Максиму. — «Пустите, летит суп!» Я не реву — уверен я. А муза рада музе без ума да разума. Кулинар, храни лук. Ты, милок, иди яром: у дороги мина, за дорогой огород, а за ним и город у моря; иди, коли мыт. Он в аду давно. Ого, вижу живого.

Меня заинтересовал вопрос. Интересно, есть ли палиндромы в математике? И можно ли перенести эту же идею - идею взаимообратного, симметрического прочтения – в математику. Симметрия (греч.) – соразмерность, одинаковость в расположении частей. Симметричным называется такой объект, который можно как-то изменять, получая в результате то же, с чего начали. Многие объекты живой природы, например лист, снежинку, бабочку объединяет то, что они симметричны. Если их мысленно сложить вдоль начерченной прямой, то их половинки совпадут. А если поставить зеркальце вдоль прочерченной линии, то отраженная в нем половинка фигуры дополнит ее до целой. Поэтому такая симметрия называется зеркальной. Прямая, вдоль которой поставлено зеркало, называется осью симметрии. Ежедневно каждый из нас по несколько раз в день видит свое отражение в зеркале. Это настолько обычно, что мы не удивляемся, не задаём вопросов, не делаем открытий. И только философы и математики не теряют способности удивляться.

Что же меняется в предмете при его отражении в зеркале? Мы провели опыты с зеркалами. Если поставить зеркало сбоку от

буквы A, то увидим в зеркале ту же самую букву. Но если поставить зеркало снизу, отражение уже не похоже на A – это A вверх дном. A вот если поставить зеркало снизу буквы B, отражение выглядит так же. Зато поставив зеркало сбоку от нее, получим B задом наперед.

Буква A имеет вертикальную симметрию, а буква В – горизонтальную. Итак, мы выяснили, что зеркальная симметрия меняет местами верх-низ, лево-право. Оказывается и среди чисел есть палиндромы. Найти числа-палиндромы в математике не составило труда. Я попыталась составить запись числа для этих чисел-палиндромов.

yy - в двузначных числах-палиндромах число единиц совпадает с числом десятков.

хах — в трехзначных числах-палиндромах число сотен всегда совпадает с числом единиц.

хаах - в четырехзначных числах-палиндромах число единиц тысяч совпадает с числом единиц, а число сотен с числом десятков и т.д.

Палиндромные формулы вызвали у меня больший интерес. Под формулами-палиндромами понимают выражение, состоящее из суммы или разности чисел, результат которого не меняется в результате прочтения выражения справа налево.

Если сложить числа-палиндромы, то сумма не меняется.

Например: 22 + 66 = 66 + 22.

В общем виде это можно записать так:  $\overline{xx} + \overline{yy} = \overline{yy} + \overline{xx}$ 

**Задача 1**. Найти все пары таких двузначных чисел, чтобы результат их сложения не менялся в результате прочтения суммы справа налево, например, 42 + 35 = 53 + 24.

Запишем равенство:

$$\overline{x_1y_1} + \overline{x_2y_2} = \overline{y_2x_2} + \overline{y_1x_1}.$$

Представим наши числа в виде суммы разрядных слагаемых:

$$(10x_1 + y_1) + (10x_2 + y_2) = (10y_2 + x_2) + (10y_1 + x_1)$$

$$10x_1 + y_1 + 10x_2 + y_2 = 10y_2 + x_2 + 10y_1 + x_1.$$

Слагаемые с x перенесем в левую часть равенства, а с y - в правую:

 $10x_1 - x_1 + 10x_2 - x_2 = 10y_1 - y_1 + 10y_2 - y_2$ . Применим распределительное свойство:

$$9 x_1 + 9 x_2 = 9 y_1 + 9 y_2$$
  

$$9(x_1 + x_2) = 9(y_1 + y_2)$$
  

$$x_1 + x_2 = y_1 + y_2.$$

То есть для решения нашей задачи сумма первых цифр должна быть равна сумме их вторых цифр.

Теперь можно составлять такие суммы:

$$76 + 34 = 43 + 67$$
  
25 + 63 = 36 + 52 и т.д.

Задача 2. Найти все пары таких двузначных чисел, чтобы результат их вычитания не менялся в результате прочтения разности справа налево.

 $\overline{x_1}y_1 - \overline{x_2}y_2 = \overline{y_2}x_2 - \overline{y_1}x_1$  Представив наши числа в виде суммы разрядных слагаемых и выполнив нужные преобразования, получим, что для решения нашей задачи у таких чисел должны быть равны суммы цифр.

$$(10x_1 + y_1) - (10x_2 + y_2) = (10y_2 + x_2) - (10y_1 + x_1)$$

$$10x_1 + y_1 - 10x_2 - y_2 = 10y_2 + x_2 - 10y_1 - x_1$$

$$10x_1 + x_1 + y_1 + 10y_1 = 10y_2 + y_2 + 10x_2 + x_2$$

$$11x_1 + 11y_1 = 11x_2 + 11y_2$$

$$11(x_1 + y_1) = 11(x_2 + y_2)$$

$$x_1 + y_1 = x_2 + y_2$$
Taylory, Moryello recognizer, when provided the

Теперь можно составлять такие разности:

$$41 - 32 = 23 - 14$$
  
 $46 - 28 = 82 - 64$   
 $52 - 16 = 61 - 25$  и т.д.

В случае умножения имеем:  $63 \cdot 48 = 84 \times 10^{-4}$  $\times 36, 82 \cdot 14 = 41 \cdot 28, ... -$  при этом произведение первых цифр у чисел  $N_1$  и  $N_2$  равно произведению их вторых цифр  $(x_1 \cdot \tilde{x}_2 = y_1 \cdot y_2)$ .

Наконец, для деления сделать получаем опыт такие примеры: 82/41=28/14; 62/31=26/13 и т.д.

В этом случае произведение первой цифры числа N<sub>1</sub> на вторую цифру числа N<sub>2</sub> равно произведению двух других их цифр, T.e.  $x_1 \cdot y_2 = x_2 \cdot y_1$ .

Я попыталась доказать формулу-палиндром для произведения. Вот что у меня по-

$$N_{1} = \frac{x_{1}y_{1}}{x_{2}y_{1}} = 10x_{1} + y_{1} N_{3} = \frac{y_{2}x_{2}}{y_{2}x_{2}} = 10y_{2} + x_{2}$$

$$N_{2} = \frac{x_{2}y_{2}}{x_{2}y_{2}} = \frac{10x_{2}}{10x_{2}} + y_{2} N_{4} = \frac{y_{1}x_{1}}{y_{1}x_{1}} = 10y_{1} + x_{1}$$

$$N_{1} \cdot N_{2} = \frac{x_{1}y_{1}}{x_{1}y_{1}} \cdot \frac{x_{2}y_{2}}{x_{2}y_{2}} = (10x_{1} + y_{1}) \cdot (10x_{2} + y_{2})$$

$$N_{3} \cdot N_{4} = \frac{y_{2}x_{2}}{y_{2}x_{2}} \cdot \frac{y_{1}x_{1}}{y_{1}x_{1}} = (10y_{2} + x_{2}) \cdot (10y_{1} + x_{1})$$

бовалось доказать.

С помощью понятий числа – палиндром и формулы-палиндромы можно решать задачи на делимость чисел, которые часто встречаются в олимпиадах по математике. Вот олна из них:

Задача. Докажите, что если из трехзначного числа вычесть число, записанное теми же цифрами, но в обратном порядке, разность будет делиться на 9.

Решение.

abc-cba=100a+10b+c-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(ac)=9·11(a-c), т.е. данное произведение всегда делится класса на 9.

Между прочим, превращается нашему поколению выпала большая удача, не каждому человеку выпадает прожить хотя бы один палиндромный год, а уж тем более два – 1991-й и 2002-й. Ведь предыдущий был в 1881-м, а следующий – в 2112-м. В своей работе мы прикоснулись к удивительному математическому явлению - симметрии, в частности к ее проявлению – палиндромам.

В своей работе я рассмотрела числапалиндромы, формулы-палиндромы для суммы и разности, произведения и частного двузначных чисел и смогла их доказать. Путь познания законов гармонии и красоты долог и труден, и мы находимся только в его начале.

Числовые палиндромы – это натуральные числа, которые одинаково читаются справа налево и слева направо. Иначе говоря, отличаются симметрией записи (расположения цифр), причём число знаков может быть как четным, так и нечётным.

Например: 121; 676; 1331; 4884; 94949; 1177711; 1178711 и т. д.

Изучая палиндромы, автор данной работы задает вопрос: «Как из других чисел можно получить палиндромы?»

Палиндром можно получить как результат операций над другими числами. Для этого воспользуемся известным алгоритмом.

Алгоритм получения палиндрома:

- Возьми любое двузначное число
- Переверни его (переставь цифры справа налево)
  - Найди их сумму
  - Переверни полученное число
  - Найди их сумму
- Повторяй аналогичные действия до тех пор, пока не получится палиндром

Пример:

- a) 96
- b) 96 + 69 = 165
- c) 165 + 561 = 726
- d) 726 + 627 + 1353
- e) 1353 + 3531 + 4884

В результате проделанной работы я пришла к выводу, что, используя составленный алгоритм, из любого двузначного числа можно получить число-палиндром.

Можно рассмотреть не только сложение, но и другие операции над палиндромами (прил. 2).

Приведем два примера того, как при помощи одних палиндромов получаются другие:

- a)  $212^2 121^2 = 44944 14641 = 30303$ ;
- $6) 2 \cdot 121 \cdot 10201 = 2 \cdot 11^2 \cdot 101^2 = 22 \cdot 112211 =$  $= 1111 \cdot 2222 = 2468642.$

Теперь обратимся к числам простым. В их бесконечном множестве имеются целые семейства палиндромов. Только среди первых ста миллионов натуральных чисел

насчитывается 781 простой палиндром, причем двадцать приходится на первую тысячу, из них четыре числа однозначные – 2; 3; 5; 7 и всего одно двузначное – 11. С такими числами связано немало интересных закономерностей:

Ø Существует единственный простой палиндром с четным числом цифр – 11.

Ø Первой и последней цифрами любого простого палиндрома могут быть только 1; 3; 7 или 9. Это следует из известных признаков делимости на 2 и на 5. Все простые двузначные числа, записанные с помощью перечисленных цифр (кроме 19), можно разбить на пары.

Например: 13 и 31; 17 и 71; 37 и 73; 79 и 97.

Ø Среди простых трехзначных палиндромов встречаются пары чисел, у которых средняя цифра отличается всего на 1.

Например: 181 и 191; 373 и 383; 787 и 797; 919 и 929.

Ø Аналогичная картина наблюдается у больших простых чисел.

Например: 94849 и 94949; 1177711 и

Ø Все однозначные числа являются палиндромами.

 $\cancel{O}$  26 — наименьшее число, не являющееся палиндромом, квадрат которого палиндром Например:  $26^2 = 676$ 

Ø А вот пары чисел — «перевертышей» 13 – 31 и 113 – 311 при возведении в квадрат дают также пары «перевёртышей»: 169 − 961 и 12769 – 96721. Любопытно, что даже суммы их цифр оказались связаны хитрым образом:

 $(1+3)^2=1+6+9$ ,

 $(1+1+3)^2 = 1+2+7+6+9$ .

О Из простых чисел-палиндромов, располагая их определённым образом, скажем построчно, можно составить симметричные фигуры, отличающиеся оригинальным рисунком из повторяющихся цифр.

| 1                                  | 1                        | 911090119            |
|------------------------------------|--------------------------|----------------------|
|                                    | 131                      |                      |
| 131                                | 13331                    | 9110119              |
|                                    | 1333331                  | 91019                |
| 13 <mark>3</mark> 31               | 131 <mark>333</mark> 131 | 31019                |
|                                    | 13331113331              | 191                  |
| 1333331                            | 313111313                |                      |
|                                    | 1311131                  | 1 <mark>9</mark> 991 |
| 131333131                          | 13331                    | 9919199              |
|                                    | 313                      | 9919199              |
| 3 <mark>3</mark> 31113 <u>3</u> 31 | 1                        | 919191919            |
|                                    |                          | + m + m + m + m +    |

### Таблица 1

### Примеры палиндромов

| В русском языке    | Утречко летело к черту Я ем змея Я нем и нежен, не жени меня Я ужру буржуя! Нам рак влетел в карман Цени в себе свинец |
|--------------------|------------------------------------------------------------------------------------------------------------------------|
| Магический квадрат | SATOR<br>AREPO<br>TENET<br>OPERA<br>ROTAS                                                                              |
| В биологии         | —————————————————————————————————————                                                                                  |

| В химии                                        | НООССООН – формула щавелевой кислоты |
|------------------------------------------------|--------------------------------------|
| В изобразительном искусстве                    |                                      |
| В пространственной математике<br>Лента Мебиуса |                                      |

### 2 Репьюниты

Репьюниты — натуральные числа, запись которых состоит только из единиц. В десятичной системе счисления репьюниты обозначаются короче  $R_n$ :  $R_1 = 1$ ,  $R_2 = 11$ ,  $R_3 = 111$  и т. д., и общий вид для них:

$$R_n = \frac{10^n - 1}{9}$$
, n= 1, 2, 3...

Общий вид репьюнита может быть записан в другом виде:

$$R_n = \underbrace{11...1}_n$$

Обнаружено немало интересных свойств репьюнитов:

- Ø Репьюниты частный случай чисел-палиндромов, которые остаются неизменными при прямом и обратном прочтении.
- $\emptyset$  Репьюниты относятся к таким палиндромам, которые делятся на произведение своих цифр.
- $\emptyset$  Известно пять простых репьюнитов:  $R_2$ ,  $R_{19}$ ,  $R_{23}$ ,  $R_{317}$  и  $R_{1031}$ , причем, что самое интересное индексы этих репьюнитов также простые числа. Самое маленькое число репьюнит 1. Самое большое еще не найдено.
- Ø В семействе репьюнитов выявлено пока только 9 простых чисел: 2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343 (индексы репьюнитов).

Ø Раскладывая некоторые составные репьюниты на простые множители:

$$111 = 3.37$$
 $1111 = 11.101$ 
 $11111 = 41.271$ 
 $111111 = 3.7.11.13.37$ 
 $1111111 = 239.4649$ 
 $11111111 = 11.73.101.137$ 
 $11111111 = 3.37.333667$  и т. д. можно заметить числа палиндромы.

Ø В результате умножения некоторых репьюнитов мы получили числа-палиндромы:

```
11·11 = 121

11·111 = 1221

1111·11 = 12221

111·111 = 12321

11111·111 = 1233321

11111·1111 = 12344321

11111·11111 = 123454321 и т.д.
```

Перемножив немало репьюнитов, можно сделать вывод о том, что каждый раз получается число-палиндром (прил. 3).

Число 7 – особенное, т.к. его запись по основанию 2: 111, а по основанию 6: 11 (т.е.  $7_{10} = 11_6 = 111_2$ ).

<sup>10</sup> Другими словами, число 7 является репьюнитом по крайней мере в двух основаниях b > 1.

Определим положительное целое число с таким свойством как сильный репьюнит. Можно убедиться, что существует 8 сильных репьюнитов меньше 50: {1,7,13,15,21,31,40,43}.

Далее, сумма всех репьюнитов меньше 1000 равна 15864.

Таблица 2

### Пример репьюнита

Треугольник, полученный из исходного после добавления к нему шести простых палиндромов. Фигура сразу привлекает внимание своим изящным обрамлением из единиц. Ее окаймляют два простых репьюнита одинаковой длины: 23 единицы составляют «основание» и еще столько же — «боковые стороны» треугольника.

В других областях науки примеры репьюнитов не найдены.

### Практическая часть

Решим две интересные задачи из журнала «Квант» №5 за 1997 год.

Задача №1

Какими цифрами следует заменить буквы, чтобы сумма девяти слагаемых стала равной репьюниту?

РЕПЬЮНИТ РЕПЬЮНИТ РЕПЬЮНИТ РЕПЬЮНИТ РЕПЬЮНИТ РЕПЬЮНИТ РЕПЬЮНИТ РЕПЬЮНИТ РЕПЬЮНИТ

Решение: 12345679+12345679+123456 79+12345679+12345679+12345679+123456 79+ +12345679+12345679=11111111 — репьюнит

Ответ: 1111111111

Задача №2

Произведением каких двух репьюнитов является число 123455554321?

Решение.

Перемножив два репьюнита, мы получили:

 $111111111 \cdot 11111 = 123455554321.$  Ответ:  $111111111 \cdot 11111$ 

Прослеживается закономерность: цифры в записи упорядочены сначала по возрастанию, а затем по убыванию, причем наибольшей цифрой является длина меньшего репьюнита, а количество повторений этой цифры в середине числа равно разности длин репьюнитов, увеличенной на единицу. Перемножив немало репьюнитов, делаем вывод о том, что каждый раз получается число-палиндром (Прил. 3).

Также экспериментально доказано, что при перемножении репьюнитов, если по правилу, наименьшее число единиц должно быть меньше 10. То есть максимальное произведение единиц: 1(19 раз) \* 1(9 раз)= 1 234 567 899 999 999 987 654 321. Далее палиндром не получается.

# Решение занимательных и олимпиадных задач

Вычислительный аппарат

 $\frac{666666 \cdot 666666}{1+2+3+4+5+6+5+4+3+2+1} = \frac{6 \cdot 111111 \cdot 6 \cdot 111111}{36} = 111111^{2} = \frac{6 \cdot 111111 \cdot 6 \cdot 111111}{36} = 111111^{2} = \frac{55555 \cdot 7777777}{35} = \frac{5 \cdot 11111 \cdot 7 \cdot 1111111}{35} = \frac{5 \cdot 11111 \cdot 1111111}{35} = \frac{11111 \cdot 11111111}{35} = \frac{12345554321}{345554321}$ Other: 12 345 554 321

### Задача 1.

Вычислить количество чисел-палиндромов, делящихся на 2:

- а) двузначных
- б) трехзначных
- в) четырехзначных
- г) пятизначных

Ответ.

На 2 делится любое четное число. Поэтому:

- а) среди двузначных чисел-палиндромов четные – 22, 44, 66 и 88. То есть 4 числа.
- б) у трехзначных чисел-палиндромов первая и последняя цифры одинаковые и должны быть четными. Четных цифр 4 (2, 4, 6 и 8). В середине может стоять любая из 10 цифр от 0 до 9. Поэтому, всего 4\*10=40 трехзначных чисел-палиндромов.
- в) у четырехзначного искомого числа должны быть четными одинаковые первая и последняя цифры их 4. При этом одинаковые вторая и третья цифры могут быть любыми из десяти. Значит, четырехзначных чисел-палиндромов тоже 40.
- г) у пятизначных чисел-палиндромов первая и последняя цифры одинаковы и четны, их может быть 4. При этом 2 и 4 цифры также одинаковы и их может быть 10. Третья цифра также может быть любой из 10. Поэтому всего пятизначных чисел-палиндромов 4\*10\*10=400.

Итак, все мы убедились в том, что математика важна не только сама по себе. Математический подход к окружающему миру помогает лучше его познать. И математический стиль мышления нужен сегодня всем — и языковеду, и биологу, и химику, и физику, и инженеру, и художнику, и поэту, и музыканту.

Проведя исследование по данной теме, я изучила свойства палиндромов и репьюнитов, установила связь между ними, выяснила какую роль играют простые числа в изменении свойств данных чисел.

Результаты исследования (сходство и различие) занесены в таблицу.

Таблица 3 Сравнение свойств палиндромов и репьюнитов

| Категории сравнения                                      | Палин-<br>дромы | Репьюни-<br>ты |
|----------------------------------------------------------|-----------------|----------------|
| Читается слева на-<br>право и справа налево<br>одинаково | +               | +              |
| Симметрия записи (расположения цифр)                     | +               | -<br>Не всегда |

| Число знаков, используемых при записи чисел, может быть четным и нечётным                                                   | +                | +                |
|-----------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| Можно получить как результат операций над другими числами: - сложение - возведение в степень - извлечение корня - умножение | +<br>+<br>+<br>+ | +<br>+<br>+<br>+ |
| Можно получить<br>многоугольные фигуры                                                                                      | +                | +                |
| Являются представителями класса простых чисел                                                                               | +                | +                |

Результаты опроса

**Таблица 4** Хотите ли знать больше об этих числах?

|       |                | Палиндромы |                                      |          | Репьюниты |           |     |          |   |
|-------|----------------|------------|--------------------------------------|----------|-----------|-----------|-----|----------|---|
| Клас- | Кол-во<br>уча- | Хоти       | Хотите узнать больше об этих числах? |          |           |           |     |          |   |
| СЫ    | щихся          | Да         | %                                    | нет      | %         | да        | %   | нет      | % |
| 7a    | 31             | 31<br>уч.  | 100                                  | 0<br>уч. | 0         | 31<br>уч. | 100 | 0<br>уч. | 0 |
| 8в    | 29             | 29<br>уч.  | 100                                  | 2<br>уч. | 0         | 29<br>уч. | 100 | 2<br>уч. | 0 |
| 9a    | 26             | 26<br>уч.  | 100                                  | 0<br>уч. | 0         | 26<br>уч. | 100 | 0<br>уч. | 0 |
| 116   | 23             | 23<br>уч.  | 100                                  | 0<br>уч. | 0         | 23<br>уч. | 100 | 0<br>уч. | 0 |

Результаты опроса показали, что все учащиеся хотят знать больше о числах-палиндромах и репьюнитах.

Также провела опрос «Используете ли вы эти числа в жизни?». Данные занесла в таблицу.

Таблица 5 Используете ли вы эти числа в жизни?

| Классы Кол-во учащихся |          | Используете ли вы эти числа в жизни? |    |        |   |
|------------------------|----------|--------------------------------------|----|--------|---|
|                        | учащихся | Да                                   | %  | нет    | % |
| 7a                     | 31       | 15 уч.                               | 48 | 16 уч. | 0 |
| 8в                     | 29       | 17 уч.                               | 58 | 19 уч. | 0 |
| 9a                     | 26       | 20 уч.                               | 76 | 6 уч.  | 0 |
| 11б                    | 23       | 19 уч.                               | 82 | 4 уч.  | 0 |

Выводы по опросу: Чем старше школьник, тем он чаще использует палиндромы и репьюниты в воей жизни.

# Приложение 1

# Операции над палиндромами

| Число     | Действие               | Результат         | Полученное число      |
|-----------|------------------------|-------------------|-----------------------|
| 17        | 17 + 71                | 88                | Палиндром             |
| 132       | 132 + 231              | 363               | Палиндром             |
| 111       | 111 <sup>2</sup>       | 12321             | Палиндром             |
| 111111111 | 111111111 <sup>2</sup> | 12345678987654321 | Палиндром             |
| 1         | 1.1                    | 1                 | Палиндром<br>Репьюнит |
| 1         | √1                     | 1                 | Палиндром<br>Репьюнит |
| 121       | √121                   | 11                | Палиндром<br>Репьюнит |

Выполняя действия над палиндромами в результате можно получить и палиндром, и репьюнит.

Приложение 2 Произведение репьюнитов дает палиндром.

| 1 множитель    | 2 множитель | Произведение      |
|----------------|-------------|-------------------|
| 111            | 111         | 12321             |
| 111            | 1111        | 123321            |
| 111            | 11111       | 1233321           |
| 111            | 111111      | 12333321          |
| 1111           | 1111        | 1234321           |
| 1111           | 11111       | 12344321          |
| 1111           | 111111      | 123444321         |
| 11111          | 11111       | 123454321         |
| 11111          | 111111      | 1234554321        |
| 111111         | 111111      | 12345654321       |
| 111111         | 1111111     | 123456654321      |
| 1111111        | 11111111    | 1234567654321     |
| 11111111       | 111111111   | 1234567887654321  |
| 111111111      | 1111111111  | 12345678887654321 |
| 111111111      | 111         | 123333333321      |
| 1111111111     | 1111        | 1234444444321     |
| 111111111111   | 111         | 12333333333321    |
| 1111111111111  | 11          | 1222222222221     |
| 11111111111111 | 111         | 1233333333333331  |

Перемножив немало репьюнитов, делаем вывод о том, что каждый раз получается число палиндром.

# Приложение 3

# Палиндромическое число

121

5995

1991

Палиндромом является квадрат числа состоящего из единиц 1<sup>2</sup>=1, 11<sup>2</sup>=121 111<sup>2</sup>=12321

В математике палиндромические числа иногда называются "числами Шахерезады" – это название было вдохновлено названием "1001 ночь", где 1001 – число-палиндром.



Приложение 4

### Фото опыта



МЕЖДУНАРОДНЫЙ ШКОЛЬНЫЙ НАУЧНЫЙ ВЕСТНИК № 4, 2018

### Заключение

Мир чисел настолько загадочен и увлекателен, что занимаясь данной работой, исследовано, что если бы каждый из нас уделял ему больше внимания, то нашел бы для себя много нового и интересного, познакомившись с удивительными натуральными числами: палиндромами и репьюнитами. Все они обязаны своими свойствами простым числам.

Значит, подтверждена гипотеза о том, что простые числа — это часть чисел, из которых состоят все натуральные числа.

Исследуя множество простых чисел, можно получить удивительные числовые множества с их необыкновенными свойствами.

В своей работе большое внимание уделяю проектам, имеющим конкретное общественно-полезное значение. Часто эти проекты являются долгосрочными, ориентированными на создание системы: урок — внеклассная деятельность.

Организационно метод проектов предусматривает сочетание индивидуальной самостоятельной работы с работой в сотрудничестве, в малых группах и в коллективе. Реализация метода проектов на практике ведет к изменению позиции учителя. Из носителя готовых знаний он превращается в организатора познавательной, исследовательской деятельности своих учеников. Изменяется и психологический климат в классе, так как учителю приходится переориентировать свою учебно-воспитательную работу и работу учащихся на разнообразные виды самостоятельной деятельности, на приоритет деятельности исследовательского, поискового, творческого характера. Обеспечение и сопровождение проектной деятельности строится на принципах сотрудничества и включает:

- а) помощь в определении школьником замысла проектной деятельности;
- b) консультирование стадий проекта: поиска информации, решений проектных задач, поощрение практического опыта непосредственной работы с текстом;
- с) внимание к индивидуальным формам и способам аналитического и образного мышления, рассуждений и интерпретации, инициирование навыков продумывания деятельности и прогнозирования ее продукта;
- d) поощрение инициативы и творческого характера проектной деятельности;
- е) участие в обеспечении презентации и общественной экспертизы результатов проектной деятельности детей.

В результате активного внедрения метода проектов на уроках и во внеурочной деятельности теперь у учащихся формируются об-

щие учебные умения, навыки и обобщенные способы деятельности. Обучающиеся более прочно усваивают знания, полученные в ходе самостоятельного решения поставленных задач. Ученики приобретают опыт вдумчивой работы с текстом художественного произведения, опыт работы с большим объемом информации из различных источников. Школьники приобретают навыки учебного сотрудничества и коммуникации: учатся чего работать в коллективе, планировать работу индивидуально и в группе, учатся оценивать ситуации и принимать решения.

Проектная деятельность на уроке и во внеурочное время способствует формированию у школьников духовности и культуры, инициативности, самостоятельности, способности к успешной социализации в обществе и активной адаптации на рынке труда.

Метод проектной деятельности актуален в связи с изменениями, происходящими в образовании. Компьютеры и мультимедиа стали неотъемлемой частью образовательного пространства. В работе использую компьютер как необходимое условие проведения современного урока. Сегодня техника позволяет представлять результаты своей деятельности ярко, логично, подбирать систему доказательств, иллюстраций к основным вопросам темы.

В процессе работы над проектом с использованием средств ИКТ формируется человек, умеющий действовать не только по образцу, но и самостоятельно, получающий необходимую информацию из максимально большего числа источников, умеющий ее анализировать и делать выводы. Метод проектов востребован школой, так как он демонстрирует высокую эффективность, мотивированность обучения, снижение перегрузки, повышение творческого потенциала учащихся.

### Список литературы

- 1 Депман И.Я. За страницами учебника математики // пособие для учащихся 5-6 классов средней школы. М.: Просвещение, 1989.
- 2 Ейтс С. Репьюниты и десятичные периоды // издательство «Мир». 1992.
- 3 Кордемский Б.А. Удивительный мир чисел // книга для учащихся. М.: Просвещение, 1995.
- 4 Кордемский Б. А. На часок к семейке репьюнитов // Квант. -1997. № 5. с. 28-29.
- 5 Перельман Я.И. Занимательная математика // издательство «Тезис». 1994
  - 6 http://arbuz.uz/t\_numbers.html.
- 7 Лоповок Л.М. Тысяча проблемных задач по математике: Кн. для учащихся. М.: Просвещение, 1995. 239с.
- 8 Карпушина Н.М. Репьюниты и палиндромы// Математика в школе. -2009, №6. -C.55-58.
- 9 Строгов И.С. Жар холодных чисел. Очерки. Л.: Детская литература, 1974.
  - 10 Перельман Я.И. Живая математика. М.: «Наука», 1978.