РАЗРАБОТКА ПРОГРАММНО-АППАРАТНОГО КОМПЛЕКСА ДЛЯ МОНИТОРИНГА ХАРАКТЕРИСТИК ПЕРЕМЕННОГО ТОКА ЭЛЕКТРИЧЕСКОЙ СЕТИ

Орлов С.А.

г. Нижний Новгород, МАОУ «Лицей № 38»,10 класс

Научные руководители: ¹Павлюков А.А., РИАЭ, ФФ ННГУ;

 2 Балакин М.А., г. Нижний Новгород, учитель физики и астрономии, МАОУ «Лицей № 3 8»

При проведении экспериментов, используются приборы, работающие от бытовой сети, в которой течет синусоидальный ток. Как мы знаем, он часто искажен различным шумом. От этого приборы начинают показывать неверные результаты измерений. И для того, чтобы определять эти моменты, мы разработали прибор, который отслеживает характеристики сети, и в случае обнаружения отклонения от допустимых значений, оповестит экспериментатора об этом.

Прибор оцифровки напряжения сети

Для преобразования аналогового сигнала в цифровой, и последующей отправки на компьютер для обработки этих данных, было решено использовать плату Arduino [1].

Она отлично подходит для поставленной задачи, поскольку обладает следующими особенностями:

- 1) У нее есть АЦП, который умеет достаточно точно оцифровывать напряжение
- 2) У нее есть встроенный интерфейс для обмена данными с компьютером
- 3) Удобный язык программирования (на базе языка C)
 - 4) доступность

Для решения поставленных задач подходит практически любая конфигурация платы Ардуино. В нашей работе использовалась модификация «SafeDuino v1.02» на базе микроконтроллера ATMega 328. Для наших целей ее оказалось предостаточно.

Puc. 1. SafeDuino v1.02

При использовании Arduino возникает проблема: ее рабочие напряжения довольно малы для нас (0-5в). Из соображения безопасности было выбрано решение на базе трансформатора.

Рис. 2. Понижающий трансформатор [3]

Так как напряжение на выходе переменное, а АЦП Arduino работает с постоянным, то было решено сместить напряжение на 2в. В итоге мы получили на выходе постоянное напряжение в диапазоне 0.4в [2].

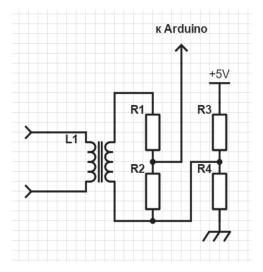


Рис. 3. Схема устройства

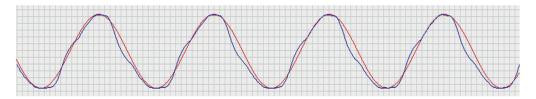


Рис. 4. Синусоида в сети (красная – по ГОСТу, синяя – наша измеренная)

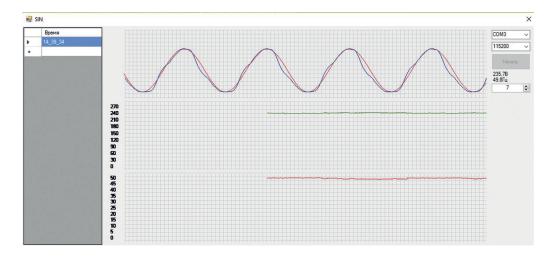


Рис. 5. Интерфейс программы

Полученное аналоговое напряжения мы с помощью АЦП Arduino преобразуем в цифровое значение в диапазоне 0..1023. Далее программа отправляет это значение на компьютер для последующей обработки.

Обработка полученных данных

Для обработки полученных данных необходимо их аппроксимировать. Для аппроксимации был выбран метод наименьших квадратов (рис. 4).

В сети переменный ток имеет вид синусоидального, т. е. с течением времени изменяется по гармоническому закону синуса. Из-за наличия шума напряжение в сети переменного тока имеет следующую зависимость от времени:

$$U = A \cdot \sin(2\pi\eta t + w_0) + N(t), \quad (1)$$

где A определяет амплитуду, η — частоту, N(t) — шум. Соответственно для выполнения аппроксимации необходимо найти минимум следующей функции:

$$\sum (y_i - A \cdot \sin(2\pi\eta t_i + w_0))^2, \qquad (2)$$

где y_i и t_i — полученные данные Поиск минимума осуществляется методом градиентного спуска. На выходе мы получаем частоту, амплитуду (напряжение) и отклонение от «нормальной» синусоиды (сумму квадратов).

Вывод полученных данных

Для наглядного представления данных, полученных с платы и обработанных программно, нами был создан графический интерфейс (рис. 5).

Программа состоит из из трех основных частей:

- таблица
- графики данных
- панель настройки

Моменты времени, в которые форма сигнала переменного тока отклонялась от идеально синусоидальной сильнее допустимого отражены в таблице.

На графиках отображаются: форма напряжения сети, напряжение и частота в сети.

Выводы

В итоге мы разработали устройство, которое осуществляет мониторинг характеристик сети.

Оно существенно повысит точность и качество проводимых экспериментов.

Список литературы

- 1. Статья в интернете «Ардуино» http://robotclass.ru/tutorials
- 2. Пинский А.А., Граковский Г.Ю. «Физика с основами электротехники», учебное пособие для техникумов, Москва, издательство «Высшая школа», 1985 г.
- 3. https://upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Transformer_OSM_0.16.gif/569px-Transformer_OSM_0.16.gif.