МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДОЗИРОВАНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ В ПЕДИАТРИЧЕСКОЙ ПРАКТИКЕ

Ванюшина И.

г. Тверь, Тверской лицей, 11 класс

Научный руководитель: Наумова А.И., г. Тверь, учитель информатики высшей категории, Тверской лицей

В данной работе представлен актуальный материал по моделированию расчётов доз лекарственных препаратов для детей с использованием электронных таблиц МЅ ЕХСЕL. Поскольку реакция на лекарственное вещество детей разного возраста зависит от большого количества факторов: возрастные характеристики устойчивости и чувствительности к данному лекарству, индивидуальные особенности конкретного ребенка, поэтому дозы лекарственных средств для детей определяют по различным правилам и в клинических испытаниях. [1]

Для разработки данного проекта была подобрана специальная литература из курса лекарственной терапии для детей и использовано приложение MS Excel.

Цель работы: научиться визуализировать расчёты в приложении Excel при решении задач из курса фармакологии.

Задачи: подобрать материал по теме с расчётными формулами, составить таблицы по разным правилам, построить графики и провести сравнительную характеристику используемых методов расчёта.

Данная работа выполнена на основании методической разработки к уроку информатики в старшей школе естественно-научного профиля преподавателя информатики А.И. Наумовой «Математическое моделирование расчётов из курса лекарственной терапии для детей», представленной на всероссийском конкурсе «ІТ-урок» Центра новых образовательных технологий (http://planeta.tspu.ru).

Основная часть. Описательная часть

ЖНВЛП. Педиатрический формуляр

Для оптимизации лекарственного обеспечения и повышения рациональности фармакотерапии используются различные ограничительные списки: перечень ЖНВЛП (жизненно необходимых и важнейших лекарственных препаратов), ПЕ-ДИАТРИЧЕСКИЙ ФОРМУЛЯР.

Перечень **ЖНВЛП** представляет собой список лекарственных препаратов, ежегодно утверждаемых правительством Российской Федерации (Распоряжение Пра-

вительства РФ от 30.07.2012 N 1378-р «Об установлении перечня жизненно необходимых и важнейших лекарственных препаратов на 2013 год»). Цены и наценки на лекарственные препараты из данного списка подлежать государственному регулированию. В 2007 году Формулярным комитетом РАМН был издан Педиатрический формуляр. Основными критериями для принятия решения о включении лекарственного средства в формулярный список являются:

- 1. Документирование его клинической ценности (то есть эффективности и безопасности) на основе данных доказательной медицины;
- 2. Приемлемый коэффициент затратно эффективного соотношения.

В его содержание вошли 370 наименований лекарственных средств из обще-ĀTX (Анатомо-терапевтичепринятых ско-химическая классификация) международная система классификации лекарственных средств. Латинское название – Anatomical Therapeutic Chemical – групп первого уровня. В педиатрическом формуляре 274 (74,1%) наименования лекарственных средств относятся к списку ЖНВЛП. В Перечне ЖНВЛП только для **10** *лекарственных препаратов* указаны лекарственные формы «для детей» и только пять из них включены в Педиатрический формуляр. При анализе инструкций по применению выявлено, что 60 лекарственных препаратов Педиатрического формуляра (16,2%) не рекомендованы к применению у детей (как правило, по причине отсутствия данных). Для 55 лекарственных препаратов (14,9%) не уточнены возрастные ограничения по их применению. В инструкциях по применению для 93 лекарственных препаратов (25,1%) информация о возможности или ограничениях применения у детей не указана. Эти результаты критического анализа Педиатрического формуляра показывают на необходимость его пересмотра и дополнения, в частности, указания лекарственных форм и возрастных ограничений применения лекарственных препаратов.

Анализируя выше изложенные данные, следует отметить, что необходимо опирать-

ся на информацию о педиатрических дозах, которая приводится производителем в инструкции по медицинскому применению препарата. При отсутствии такой информации надо придерживаться методов перерасчета, принимающих во внимание массу тела, возраст и площадь поверхности тела. Но всегда нужно помнить, что педиатрическая доза никогда не должна превышать взрослую дозу! И, наконец, только проведение клинических исследований лекарственных препаратов педиатрами сможет внести полную ясность в проблему дозирования лекарств детям [1].

Оптимальное дозирование лекарственных средств у детей

Оптимальное дозирование лекарственных препаратов в детском возрасте определяют множество факторов: период детства (возраст), масса и поверхность тела, характер и тяжесть заболевания, способ применения, всасывание и выведение, вкусовые качества лекарства, цель медикаментозной терапии (ударные дозы, поддерживающие дозы, профилактика), наличие побочных явлений. Особое значение при дозировании лекарств имеет структура организма детей, который в значительной мере отличается от организма взрослых. Внеклеточная жидкость у новорожденных представляет 45%, а у взрослых – 15% массы тела. Внутриклеточная жидкость и твердые составные части (белки, жиры и микроэлементы) в первые дни новорожденности представляют лишь **29** %, а у взрослых – **54** % общей массы тела.

В зависимости от химических, физических и физиологических свойств, разные лекарственные средства распределяются в экстра - и интрацеллюлярных пространствах. Поэтому эффективного лечения не следует ожидать лишь на основании определения абсолютного содержания в крови, так как результат зависит от концентрации действующего вещества в очаге болезни. Так, например, некоторые антибиотики достигают очень различных концентраций в крови, тканях, полостях тела, и именно это определяет эффективность их терапевтического воздействия. Они, и в особенности пенициллиновые соединения и тетрациклиновые препараты, распределяются главным образом в экстравазальных пространствах, вот почему грудным детям назначают в 2 раза большие дозы, чем взрослым. Что касается конкретного дозирования лекарств в детском возрасте, то существуют несколько возможностей: дозирование, связанное с дозой для взрослых; дозирование в зависимости от возраста ребенка; определение дозы эмпирическим путем; дозирование в зависимости от массы и определение дозы в зависимости от поверхности тела.

Определение дозы лекарственного средства для детей как той или иной части дозы взрослого, необходимой в данном возрасте ребенку, уже практически не используют (табл. 1). Данный способ дозирования неточен, основан только на возрасте ребенка и не учитывает его индивидуальных особенностей. Для некоторых препаратов доза определяется эмпирическим путем. Это касается главным образом лекарственных средств, для которых, имея в виду особенности организма детей, невозможно использовать определенные расчетные формулы.

Таблица 1 Дозировка лекарственных препаратов у детей

Возраст	Часть дозы для взрослого	Дозис-фактор по Harnack
1 мес.	1/10	1,8 / от 0
6 мес.	1/5	до 1 года /
1 год	1/4	
3 года	1/3	1,6 / от 1
		до 6 лет /
7 лет	1/2	1,4 / от 6
		до 10 лет /
12 лет	2/3	1,2 / от 10
		до 12 лет /
Взрослый	1	1,0

В детском возрасте преобладающее значение имеет определение дозы в зависимости от массы и поверхности тела. Оба метода взаимно дополняются в зависимости от вида лекарства. Они позволяют легко вычислить необходимую дозу в зависимости от массы, а для определения площади поверхности тела существуют номограммы или таблицы (табл. 2).

Расчёт детской дозы с применением *дозис-фактора Харнака* (G. Harnack, в 1960 г. предложил множитель «Дозис-фактор», который зависит от возраста ребёнка) проводится по формуле:

$$DD = VD / 70 * m * DF$$
,

в которой: \mathbf{DD} — детская доза; \mathbf{VD} — взрослая доза; \mathbf{m} — масса тела ребенка, кг; \mathbf{DF} — дозис-фактор.

Расчет по данной формуле позволяет более точно определить необходимые для конкретного ребёнка дозировки лекарственных препаратов, поскольку учитывается конкретная масса тела ребенка и возрастные особенности обменных процессов.

Однако существует возможность еще более точно вычислить необходимую

данному конкретному ребенку дозировку лекарственных препаратов на основании площади поверхности его тела. В данном случае применяют следующую формулу:

ND дети = **ND** взрослого * **KO** детей /
$$1.73 \text{ m}^2 \text{ * KO}$$
.

где **ND** – нормальная доза; **кО** – поверхность тела или формулу:

$$DD = VD / m * K$$

где ${\bf DD}$ – детская доза (мг/кг); ${\bf VD}$ – расчётная взрослая доза (мг/кг), ${\bf m}$ – масса тела ребёнка (кг), ${\bf K}$ – поправочный коэффициент [2, 4, 5].

Для того, чтобы рассчитать дозировку разового приёма лекарства для ребёнка, необходимо знать дозировку этого лекарства на 1 кг веса тела взрослого человека. Последнюю, в свою очередь, легко получить, зная вес взрослого пациента и принимаемую им дозу препарата. Например, если вес взрослого человека составляет 70 кг,

а принимаемая им доза — 0.15 г, то дозировка на 1 кг его веса составляет 0.15 г : 70 кг = 0.0021 г. (Если в инструкции к препарату приведена доза для взрослого человека без указания веса, то вес для расчётов следует взять равным 70 кг). У детей старше 14 лет «Дозис-фактор» равен единице, и дозировки для них должны применяться такие же, как и для взрослых (если в инструкции к препарату не сказано иное). Детские дозы можно также рассчитать по формуле:

$$DD = VD * a / (a + 12),$$

где **DD** – доза для ребёнка; **VD** – доза для взрослого; **a** – возраст ребёнка в годах [6].

Различные правила дозирования лекарственных средств для детей

Универсальных правил расчёта, которые могли бы полностью гарантировать эффективность и безопасность приёма лекарств, нет. Требуется учитывать особенности организма каждого ребёнка.

 Таблица 2

 Соотношение поверхности тела в зависимости от возраста, роста и массы ребёнка

Возраст	Масса, кг	Рост, см	Поверхность тела, м2	Процентное отн	ношение к взрослым
				% массы	%поверхности
Новорождённые	3,5	50	0,25	5	14
2-3 мес.	5	60	0,28	8	16
6 мес.	7,5	65	0,35	11	20
1 год	10	75	0,43	15	25
3 года	15	97	0,6	23	35
6 лет	20	115	0,85	30	46
7 лет	23	123	0,9	35	50
9 лет	28	135	1,0	42	50
10 лет	30	140	1,05	46	60
12 лет	40	142	1,2	62	70
14 лет	50	150	1,43	77	86
Взрослые	70	162	1,73	100	100

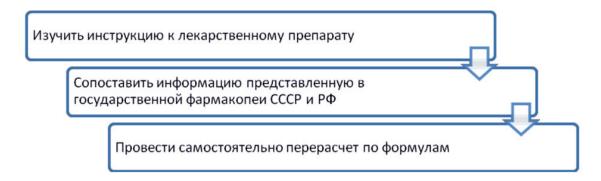


Рис. 1. Принципы расчёта дозы лекарственного вещества для детей

Лекарственное средство детям принято назначать из расчета на 1 кг массы тела, на 1 м² поверхности тела или на год жизни ребенка. Существуют различные подходы к расчету доз для детей на основе дозы лекарственного препарата для взрослого:

- исходя из массы тела (правило Кларка);
- исходя из возраста (правило Янга);
- исходя из площади поверхности тела; на основе дозис-фактора [1].

Правило Кларка (исходя из массы тела)

Расчет дозы детям *исходя из массы тела* осуществляется по следующей формуле (правило Кларка):

Доза = доза для взрослого ×

$$\times \frac{\text{Масса тела ребенка (кг)}}{70}.$$

Пример 1. Рассчитаем дозу для новорожденного по правилу Кларка исходя из массы тела. Масса тела новорожденного 3 кг Средняя терапевтическая доза лекарственного препарата для взрослого 350 мг.

Доза = доза для взрослого \times

$$\times \frac{\text{Масса тела ребенка (кг)}}{70} =$$

$$= 350 \times \frac{3 \text{ кг}}{70 \text{ кг}} = 15 \text{ мг.}$$

Таким образом, доза лекарственного препарата для новорождённого ребенка составляет **15** мг [1].

Правило Янга (исходя из возраста)

Расчет дозы лекарственных средств для детей, *исходя из возраста* основаны на *правиле Янга*:

Доза = доза для взрослого \times

$$\times \frac{\text{Возраст ребенка (годы)}}{\text{Возраст ребенка (годы)} + 12}$$

Пример 2. Проведем расчет дозы для 6-летнего ребенка. Доза для взрослого составляет 350 мг.

Доза = доза для взрослого \times

$$\times \frac{\text{Возраст ребенка (годы)}}{\text{Возраст ребенка (годы)} + 12} =$$

$$= 350 \times \frac{6}{6 + 12} = 117 \,\text{мг}.$$

Таким образом, доза лекарственного препарата для 6-летнего ребенка составляет **117** мг.

Расчеты дозы, базирующиеся *на возрасте или массе тела*, традиционны и имеют тенденцию к преуменьшению требующейся дозы [1].

Исходя из площади поверхности тела

У детей с избыточной или недостаточной массой тела может отмечаться передозировка или малая дозировка при расчете на массу тела. В этом случае лучше пользоваться расчетом на площадь поверхности тела. Существуют специальные номограммы, позволяющие переходить при расчете от величины массы тела больного к площади поверхности тела (табл. 3 и табл. 4). Следует учесть, что более адекватным для выбора дозы лекарственного вещества детям разных возрастов являются расчеты, учитывающие площадь поверхности тела [1].

Пример 3. Расчет дозы для новорожденного ребенка. Доза лекарственного вещества составляет 5 мг/кг для взрослого больного. Доза для взрослого пациента составит — 70 кгх5 мг/кг = 350 мг. Проведем перерасчет дозы на массу тела новорожденного, равную 3 кг с учётом площади поверхности. Поправочный коэффициент равен 0,12 (12%).

Доза = расчетная доза × коэффициент=
$$117 \times 0,12 = 14,04 \approx 14 \frac{\text{M}\Gamma}{\text{K}\Gamma}$$
.

Доза данного препарата для новорожденного составляет: 14 мг/кг [1]

 Таблица 3

 Номограммы, позволяющие переходить от величины массы тела человека к площади поверхности тела

Масса тела, кг	3,5	7	10	15	20	25	30	40	50	70
Площадь поверхности тела, м ²	0,22	0,35	0,45	0,65	0,80	0,95	1,05	1,25	1,5	1,72

Таблица 4 Определение дозы лекарственного средства по площади поверхности тела

Масса тела, кг	Приблизительный возраст	Площадь поверхности тела, м ²	Процент от дозы взрослого,%
3	Новорожденный	0,2	12
6	3 месяца	0,3	18
10	1 год	0,45	28
20	5,5 года	0,8	48
30	9 лет	1	60
40	12 лет	1,3	78
50	14 лет	1,5	90
60	Взрослый	1,7	102
70	Взрослый	1,76	103

Дозис-фактор по Харнаку

Таблица 5

Показатель «Дозис-фактора» для различных возрастных категорий

Возраст, лет	«Дозис-фактор»
0-1	1,8
1-6	1,6
7-10	1,4
11-12	1,2
Старше 14 лет (Взрослый)	1,0

Пример 4. Доза препарата для взрослого человека (масса 70 кг) равна 500 мг. Рассчитаем дозу для 8-летнего ребенка массой тела 26 кг Доза для взрослого равна 500 мг / 70 = 7,14 мг/кг Масса тела ребенка равна 26 кг Доза лекарственного препарата для ребенка равна 7,14 х 26 х 1,4 = **260** мг [1].

Проектная часть

Моделирование расчётов в приложении MS EXCEL Составление таблиц и графиков

В проектной части рассмотрим более точные методы расчётов.

Исходя из площади поверхности тела

Доза лекарственного вещества составляет 5 мг/кг для взрослого при весе в 70 кг Рассчитаем дозу для детей с учётом площади поверхности тела и поправочного коэффициента по формуле:

$$DD = VD / m * K,$$

где **DD** – детская доза (мг/кг); **VD** – расчётная взрослая доза (мг/кг), \mathbf{m} – масса тела ребёнка (кг), К – поправочный коэффициент. Составим табл. 6 и войдём в приложение MS Excel (puc. 2).

Таблица 6

Масса тела детей и поправочный коэффициент

Масса тела, кг	3	6	10	20	30	40	50	70
Коэффициент (% от взрослого)	0,12	0,18	0,28	0,48	0,60	0,78	0,90	1,00

1	А	В	С	D	E	F	G	Н	-	J	K
1											
2		Доза препарата, мг/кг =	5								
3		Вес взрослого человека, кг. =	70								
4											
5		Масса ребёнка, кг.	3	6	10	20	30	40	50	70	
6		Коэффициент, % от взрослого	0,12	0,18	0,28	0,48	0,60	0,78	0,90	1,00	
7		Доза для ребёнка, мг/кг.	14,00	10,50	9,80	8,40	7,00	6,83	6,30	5	
8											S

Рис. 2. Расчёт дозы препарата в зависимости от массы тела и коэффициента

Исходя из площади поверхности тела

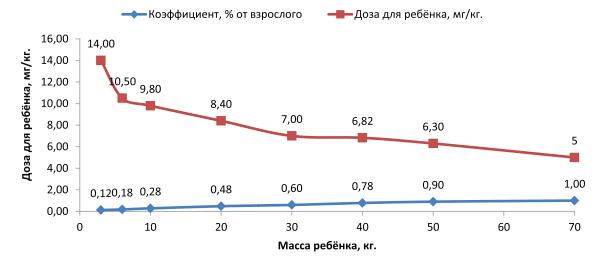


Рис. 3. График зависимости дозы препарата от массы тела и коэффициента

- 1. Для ввода дозы лекарственного вещества (мг/кг) взрослого будем использовать ячейку С2, для веса взрослого человека (кг) ячейку С3.
- 2. Из табл. 6 в ячейки диапазона C5:J5 введём значения массы детей в кг
- 3. Из табл. 6 в ячейки диапазона C6:J6 значения коэффициентов в %.
- 4. В ячейки диапазона **C7:J7** введём соответствующие формулы расчёта: в ячейку **C7** формулу = C2*C3/C5*C6, в ячейку **D7** формулу = C2*C3/D5*D6 и т.д.
- 5. Визуализируем расчёты, построив график зависимости дозы препарата от площади поверхности тела, используя диаграмму типа *График* (*puc. 3*).
- 6. При построении графика в качестве *категорий* используем диапазон ячеек **C5:J5**, а в качестве *значений* диапазоны ячеек **C7:J7** (*puc.* 2) [3].

Дозис-Фактор по Харнаку

Средняя терапевтическая доза лекарственного препарата для взрослого 350 мг, вес взрослого человека — 70 кг Рассчитаем дозу для детей с применением Дозис-Фактора Харнака по формуле:

$$DD = VD / 70 * m * DF$$

где **DD** – детская доза (мг.); **VD** – взрослая доза (мг.); **m** – масса тела ребенка (кг); **DF** – Дозис-Фактор. Составим табл. 7 и войдём в приложение MS Excel (*puc. 3*).

1. Для ввода дозы препарата взрослого человека (мг.) будем использовать ячейку **C2**, для ввода массы тела взрослого человека (кг) – ячейку **C3**.

- 2. Из табл. 7 в ячейки диапазона **C5:J5** введём значения массы тела детей (кг).
- 3. Из табл. 7 в ячейки диапазона **C6:J6** значения Дозис-Фактора.
- 4. В ячейки диапазона **C7:J**7 введём соответствующие формулы расчёта: в ячейку **C7** формулу = C2/C3*C5*C6, в ячейку **D7** формулу = C2/C3*D5*D6 и т.д.
- 5. Визуализируем расчёты, построив график зависимости дозы препарата от площади поверхности тела, используя диаграмму типа *График* (*puc.* 5).
- 6. При построении графика в качестве *категорий* использовать диапазон ячеек
- C5: J5, а в качестве *значений* диапазоны ячеек C7: J7 (*puc.* 4) [3].

Визуальная сравнительная характеристика различных методов дозирования

Сравним данные двух вариантов расчёта, полученные графическим путём (рис. 6–7). Расчёт проведён по формуле:

$$DD = VD / m * K,$$

где ${\bf DD}$ – детская доза; ${\bf VD}$ – расчётная доза взрослого, ${\bf m}$ – масса тела ребёнка, ${\bf K}$ – поправочный коэффициент. Результат получаем в мг/кг [1, 3].

Расчёт проведён по формуле:

$$DD = VD / 70 * m * DF$$

где ${\bf DD}$ — детская доза; ${\bf VD}$ — взрослая доза; ${\bf m}$ — масса тела ребенка, кг; ${\bf DF}$ — Дозис-фактор. Результат получаем в мг [1,3].

По полученным данным составим *табл.* 8 соответствия доз препаратов.

Таблица 7

Масса тела и Дозис-фактор детей

Масса тела ребёнка, кг	3	6	10	20	30	40	50	70
Дозис-фактор	1,8	1,8	1,8	1,6	1,4	1,2	1,2	1,0

4	Α	В	С	D	E	F	G	Н	1	J	K
1											
2		Доза препарата для взрослого, мг. =	350								
3		Масса взрослого, кг =	70								
4											
5		Масса тела ребёнка, кг.	3	6	10	20	30	40	50	70	
6		Дозис-фактор по Харнаку	1,8	1,8	1,8	1,6	1,4	1,2	1,2	1,0	
7		Доза препарата для ребёнка, мг.	27,00	54,00	90,00	160,00	210,00	240,00	300,00	350,00	
8											

Рис. 4. Расчёт дозы препарата с использование Дозис-фактора

Дозис-Фактор по Харнаку

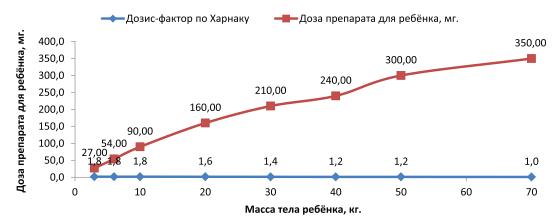


Рис. 5. График зависимости дозы препарата от Дозис-фактора

Исходя из площади поверхности тела

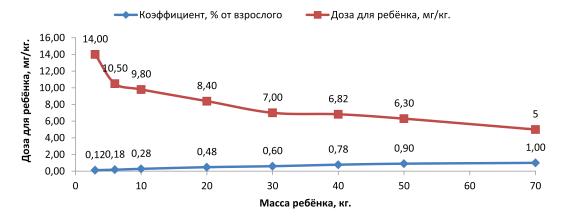


Рис. 6. График зависимости дозы препарата от массы тела и коэффициента

Таблица 8

Дозис-Фактор по Харнаку

Рис. 7. График зависимости дозы препарата от Дозис-фактора

Соответствия доз препаратов

Масса тела	Доза лекарственного препарата							
ребёнка, кг	Исходя из площади поверхности тела, мг	Дозис-фактор по Харнаку, мг						
3	14 x 3 = 42	27						
6	$10,50 \times 6 = 63$	54						
10	9,80 x 10 = 98	90						
20	8,40 x 20 = 168	160						
30	$7,00 \times 30 = 270$	210						
40	6,83 x 40 = 273, 2	240						
50	6,30 x 50 = 315	300						
70	$5 \times 70 = 350$	350						

Сравнив и проанализировав полученные результаты проектной части работы, можно сделать следующие выводы: в результате визуального сравнения различных методов было доказано, что, как было сказано выше, оба метода взаимно дополняются и максимально учитывают особенности организма каждого ребёнка. Дозы лекарственных препаратов разнятся в допустимых значениях и в итоге выходят на начальные дозы взрослого (350 мг). По правилу «Исходя из площади поверхности тела» расчёты более точные, но для детей с избыточной или недостаточной массой тела целесообразно определять индивидуальную дозу на основе «ДОЗИС-ФАКТОРА».

Заключение

Путём математических расчётов различных методов определения дозы лекарственных препаратов для детей с использованием визуализации данных в приложении

MS EXCEL по составленным таблицам и построенным по ним графикам были найдены наиболее оптимальные варианты: Исходя из площади поверхности тела и Дозис-фактор по Харнаку.

Список литературы

- 1. Особенности дозирования лекарственных веществ детям [Электронный ресурс]. Режим доступа: http://mybiblioteka.su/10-43269.html.
- 2. Особенности лекарственной терапии у детей [Электронный ресурс]. Режим доступа: http://vmede.org/sait/.
- 3. Угринович Н.Д., Информатика и ИКТ, Учебник для 10-11 классов, БИНОМ, 2009 г., Москва.
- 4. Фармакология с общей рецептурой: учебник / Д.А. Харкевич. 3-е изд., испр. и доп. М.: ГЭОТАР Медиа, 2015. 464 с.: ил.
- 5. Фармакология с общей рецептурой: учебное пособие / В.В. Майский, Р.Н. Аляутдин. 3-е изд., доп. и перераб. М.: ГЭОТАР Медиа, 2015. 240 с.:26 ил.
- 6. Энциклопедический справочник. Современные лекарства. М.: Русское энциклопедическое товарищество, 2005; М.: ОЛМА-ПРЕСС, 2005.